【图像处理】RGB图像边缘检测

 2023-09-07 阅读 23 评论 0

摘要:【fishing-pan:https://blog.csdn.net/u013921430 转载请注明出处】 灰度图边缘检测    在学习图像处理时,首先接触到的就是灰度图像的边缘检测,这是图像处理最基础的也是最重要的一环,熟悉图像边缘检测有助于我们学习其他的数字图像处理方法。

【fishing-pan:https://blog.csdn.net/u013921430 转载请注明出处】

灰度图边缘检测

   在学习图像处理时,首先接触到的就是灰度图像的边缘检测,这是图像处理最基础的也是最重要的一环,熟悉图像边缘检测有助于我们学习其他的数字图像处理方法。由于图像的边缘区域会存在明显的像素值阶跃,因此边缘检测主要是通过获得图像灰度梯度,进而通过梯度大小和变化来判断图像边缘的。
  
在这里插入图片描述
   因此,我们可以通过一阶差分;
Δfx(x,y)=f(x+1,y)−f(x,y)Δfy(x,y)=f(x,y+1)−f(x,y)\Delta f_{x}(x,y)=f(x+1,y)-f(x,y)\\ \Delta f_{y}(x,y)=f(x,y+1)-f(x,y) Δfx(x,y)=f(x+1,y)f(x,y)Δfy(x,y)=f(x,y+1)f(x,y)
   或者二阶差分对边缘区域进行判断;
Δfxx(x,y)=f(x+1,y)+f(x−1,y)−2f(x,y)Δfyy(x,y)=f(x,y+1)+f(x,y−1)−2f(x,y)\Delta f_{xx}(x,y)=f(x+1,y)+f(x-1,y)-2f(x,y)\\ \Delta f_{yy}(x,y)=f(x,y+1)+f(x,y-1)-2f(x,y) Δfxx(x,y)=f(x+1,y)+f(x1,y)2f(x,y)Δfyy(x,y)=f(x,y+1)+f(x,y1)2f(x,y)
   其中一阶差分可以判断边缘是否存在,二阶差分还可以根据正负号判断像素点在图像边缘亮的一侧还是暗的一侧。
   其他的边缘检测方法还包括一些梯度算子,例如Prewitt算子、Sobel算子,Canny算子,LOG边缘检测算子等,在此不做说明。

彩色图边缘检测

   RGB 图像使用三个通道存储像素信息,我们可以将这三个通道的信息看作是一个矢量,而矢量是不存在梯度的概念的,我们无法直接将上诉方法或算子直接用于RGB 图像,而且RGB图像单个通道的梯度信息又无法反映整体的梯度信息。
   在《数字图像处理》(冈萨雷斯)中提到了一种针对彩色图像的边缘检测方法,这种方法由 Di Zenzo 等人在1986年提出,下面就一起看看这种方法如何得出。

Di Zenzo’s gradient operator

图像处理工具。   在图像多通道图像f(x,y)f(x,y)f(x,y) 中的某一点P(x,y)P(x,y)P(x,y) 处,假设其梯度方向为θ\thetaθ
Δf=∥f(x+εcosθ,y+εsinθ)−f(x,y)∥\Delta f=\left \| f(x+\varepsilon cos\theta,y+\varepsilon sin\theta) -f(x,y)\right \| Δf=f(x+εcosθ,y+εsinθ)f(x,y)
   为了便于计算,将计算绝对值换为计算平方,令
Δf2=∥f(x+εcosθ,y+εsinθ)−f(x,y)∥2\Delta f^{2}=\left \| f(x+\varepsilon cos\theta,y+\varepsilon sin\theta) -f(x,y)\right \|^{2} Δf2=f(x+εcosθ,y+εsinθ)f(x,y)2
   对f(x+εcosθ,y+εsinθ)f(x+\varepsilon cos\theta,y+\varepsilon sin\theta)f(x+εcosθ,y+εsinθ)进行二元泰勒展开;
f(x+εcosθ,y+εsinθ)=f(x,y)+∑i=1m(εcosθ⋅∂fi(x,y)∂x+εsinθ⋅∂fi(x,y)∂y)+on≈f(x,y)+∑i=1m(εcosθ⋅∂fi(x,y)∂x+ε⋅sinθ⋅∂fi(x,y)∂y)\begin{aligned} f(x+\varepsilon cos\theta,y+\varepsilon sin\theta)&=f(x,y)+\sum_{i=1}^{m}(\varepsilon cos\theta\cdot\frac{\partial f_{i}(x,y)}{\partial x} +\varepsilon sin\theta\cdot\frac{\partial f_{i}(x,y)}{\partial y} )+o^{n}\\ &\approx f(x,y)+\sum_{i=1}^{m}(\varepsilon cos\theta\cdot\frac{\partial f_{i}(x,y)}{\partial x} +\varepsilon\cdot sin\theta\cdot\frac{\partial f_{i}(x,y)}{\partial y} ) \end{aligned} f(x+εcosθ,y+εsinθ)=f(x,y)+i=1m(εcosθxfi(x,y)+εsinθyfi(x,y))+onf(x,y)+i=1m(εcosθxfi(x,y)+εsinθyfi(x,y))
   其中mmm表示图像通道数目,为了方便表述使用∂fi∂x\frac{\partial f_{i}}{\partial x}xfi代替∂fi(x,y)∂x\frac{\partial f_{i}(x,y)}{\partial x}xfi(x,y),而在求导时各个通道之间是相互独立的,则有;
Δf2≈∑i=1m(εcosθ⋅∂fi∂x+εsinθ⋅∂fi∂y)2\Delta f^{2}\approx\sum_{i=1}^{m}(\varepsilon cos\theta\cdot\frac{\partial f_{i}}{\partial x} +\varepsilon sin\theta\cdot\frac{\partial f_{i}}{\partial y} )^{2} Δf2i=1m(εcosθxfi+εsinθyfi)2
  重新定义一个函数G(θ)G(\theta)G(θ),令
G(θ)=∑i=1m(εcosθ⋅∂fi∂x+εsinθ⋅∂fi∂y)2=ε2(cosθ2∑i=1m∥∂fi∂x∥2+sinθ2∑i=1m∥∂fi∂y∥2+2sinθcosθ∑i=1m∂fi∂x∂fi∂y)\begin{aligned} G(\theta)&=\sum_{i=1}^{m}(\varepsilon cos\theta\cdot\frac{\partial f_{i}}{\partial x} +\varepsilon sin\theta\cdot\frac{\partial f_{i}}{\partial y} )^{2}\\ &=\varepsilon ^{2}(cos\theta^{2}\sum_{i=1}^{m}\left \|\frac{\partial f_{i}}{\partial x}\right \|^{2}+sin\theta^{2}\sum_{i=1}^{m}\left \|\frac{\partial f_{i}}{\partial y}\right \|^{2}+2sin\theta cos\theta \sum_{i=1}^{m}\frac{\partial f_{i}}{\partial x}\frac{\partial f_{i}}{\partial y}) \end{aligned} G(θ)=i=1m(εcosθxfi+εsinθyfi)2=ε2(cosθ2i=1mxfi2+sinθ2i=1myfi2+2sinθcosθi=1mxfiyfi)
   进一步舍去式子中的ε\varepsilonε 项,令
G(θ)=cosθ2∑i=1m∥∂fi∂x∥2+sinθ2∑i=1m∥∂fi∂y∥2+2sinθcosθ∑i=1m∂fi∂x∂fi∂yG(\theta)=cos\theta^{2}\sum_{i=1}^{m}\left \|\frac{\partial f_{i}}{\partial x}\right \|^{2}+sin\theta^{2}\sum_{i=1}^{m}\left \|\frac{\partial f_{i}}{\partial y}\right \|^{2}+2sin\theta cos\theta \sum_{i=1}^{m}\frac{\partial f_{i}}{\partial x}\frac{\partial f_{i}}{\partial y} G(θ)=cosθ2i=1mxfi2+sinθ2i=1myfi2+2sinθcosθi=1mxfiyfi
   为了进一步方便表述;令
E=∑i=1m∥∂fi∂x∥2;F=∑i=1m∥∂fi∂y∥2;H=∑i=1m∂fi∂x∂fi∂yE=\sum_{i=1}^{m}\left \| \frac{\partial f_{i}}{\partial x} \right \|^{2}; F=\sum_{i=1}^{m}\left \|\frac{\partial f_{i}}{\partial y}\right \|^{2}; H=\sum_{i=1}^{m}\frac{\partial f_{i}}{\partial x}\frac{\partial f_{i}}{\partial y} E=i=1mxfi2;F=i=1myfi2;H=i=1mxfiyfi
G(θ)=cosθ2E+sinθ2F+2sinθcosθHG(\theta)=cos\theta^{2}E+sin\theta^{2}F+2sin\theta cos\theta H G(θ)=cosθ2E+sinθ2F+2sinθcosθH
   现在θ\thetaθ成为了式子中唯一的变量,再回到边缘的定义上,边缘的方向是图像像素梯度最大的方向。也就是说梯度的方向θmax\theta_{max}θmax 会使G(θ)G(\theta)G(θ) 取最大值,则;
θmax=G(θ)argmax\theta_{max}=\underset{argmax}{G(\theta )} θmax=argmaxG(θ)
   对G(θ)G(\theta)G(θ) 进行求导;
G(θ)′=−Esin2θ+Fsin2θ+2Hcos2θG(\theta )^{'}=-Esin2\theta +F sin2\theta+2 H cos2\theta G(θ)=Esin2θ+Fsin2θ+2Hcos2θ
   令G(θ)′=0G(\theta )^{'}=0G(θ)=0,得;
tan2θmax=2HE−Fθmax=12arctan(2HE−F+kπ)tan ~2\theta_{max} =\frac{2H}{E-F}\\ \theta_{max}=\frac{1}{2}arctan(\frac{2H}{E-F}+k\pi) tan 2θmax=EF2Hθmax=21arctan(EF2H+kπ)
   很明显G(θ)G(\theta )G(θ) 是一个以π\piπ 为周期的周期函数,如果只考虑区间[0,π)\left [ 0 ,\pi\right )[0,π),且θmax\theta_{max}θmax 落到该区间内,则会有另一个让G(θ)G(\theta )G(θ)取极值的解也落在该区域内,这个值是θmax+π2\theta_{max}+ \frac{\pi}{2}θmax+2π或者θmax−π2\theta_{max}-\frac{\pi}{2}θmax2π。但是不论如何这两个解有一个让G(θ)G(\theta )G(θ)取极大值,另一个让其取极小值,两个角度相差 90°。
  
   说到这里大家应该都明白了,两个角度对应的方向是相互垂直的,一个是垂直于边缘的方向,也就是边缘的法向,此时梯度取最大值。另一个是平行于边缘的方向,是边缘的切向,此时梯度取极小值。
  

RGB图像的边缘检测

   在RGB图像中,m=3m=3m=3,再令;
u→=∂R∂xr→+∂G∂xg→+∂B∂xb→\overset{\rightarrow }{u}=\frac{\partial R}{\partial x}\overset{\rightarrow }{r}+\frac{\partial G}{\partial x}\overset{\rightarrow }{g}+\frac{\partial B}{\partial x}\overset{\rightarrow }{b} u=xRr+xGg+xBb
v→=∂R∂yr→+∂G∂yg→+∂B∂yb→\overset{\rightarrow }{v}=\frac{\partial R}{\partial y}\overset{\rightarrow }{r}+\frac{\partial G}{\partial y}\overset{\rightarrow }{g}+\frac{\partial B}{\partial y}\overset{\rightarrow }{b} v=yRr+yGg+yBb
   其中r→\overset{\rightarrow }{r}rg→\overset{\rightarrow }{g}gb→\overset{\rightarrow }{b}b分别代表不同颜色分量的单位向量,则
gxx=E=u→Tu→=∥∂R∂x∥2+∥∂G∂x∥2+∥∂B∂x∥2g_{xx}=E=\overset{\rightarrow }{u}^{\tiny{T}}\overset{\rightarrow }{u}=\left \| \frac{\partial R}{\partial x} \right \|^{2}+\left \| \frac{\partial G}{\partial x} \right \|^{2}+\left \| \frac{\partial B}{\partial x} \right \|^{2} gxx=E=uTu=xR2+xG2+xB2
gyy=F=v→Tv→=∥∂R∂y∥2+∥∂G∂y∥2+∥∂B∂y∥2g_{yy}=F=\overset{\rightarrow }{v}^{\tiny{T}}\overset{\rightarrow }{v}=\left \| \frac{\partial R}{\partial y} \right \|^{2}+\left \| \frac{\partial G}{\partial y} \right \|^{2}+\left \| \frac{\partial B}{\partial y} \right \|^{2} gyy=F=vTv=yR2+yG2+yB2
gxy=H=u→Tv→=∂R∂x∂R∂y+∂G∂x∂G∂y+∂B∂x∂B∂yg_{xy}=H=\overset{\rightarrow }{u}^{\tiny{T}}\overset{\rightarrow }{v}=\frac{\partial R}{\partial x}\frac{\partial R}{\partial y}+\frac{\partial G}{\partial x}\frac{\partial G}{\partial y}+\frac{\partial B}{\partial x}\frac{\partial B}{\partial y} gxy=H=uTv=xRyR+xGyG+xByB
   在利用Di Zenzo 提出的方法求得θmax\theta_{max}θmax 后,将以上符号带入到G(θ)G(\theta)G(θ),可以计算出像素点梯度大小为
G(θ)={12[(gxx+gyy)+(gxx−gyy)cos2θmax+2gxysin2θmax]}12G(\theta)=\left \{ \frac{1}{2}\left [ (g_{xx}+g_{yy}) +(g_{xx}-g_{yy})cos~2\theta_{max} +2g_{xy}sin~2\theta_{max} \right ]\right \}^{\frac{1}{2}} G(θ)={21[(gxx+gyy)+(gxxgyy)cos 2θmax+2gxysin 2θmax]}21
   进而可以根据梯度大小进行边缘检测。

参考资料

  1. S. Di Zenzo, A note on the gradient of a multi-image, Computer Vision, Graphics, and Image Processing 33 (1) (1986) 116–125.
  2. 《数字图像处理》 (冈萨雷斯)

版权声明:本站所有资料均为网友推荐收集整理而来,仅供学习和研究交流使用。

原文链接:https://hbdhgg.com/5/12633.html

发表评论:

本站为非赢利网站,部分文章来源或改编自互联网及其他公众平台,主要目的在于分享信息,版权归原作者所有,内容仅供读者参考,如有侵权请联系我们删除!

Copyright © 2022 匯編語言學習筆記 Inc. 保留所有权利。

底部版权信息